Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.564
Filtrar
1.
Pestic Biochem Physiol ; 200: 105814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582586

RESUMO

To explore active natural products against tobacco powdery mildew caused by Golovinomyces cichoracearum, an extract from the fermentation of endophytic Aspergillus fumigatus 0338 was investigated. The mechanisms of action for active compounds were also studied in detail. As a result, 14 indole alkaloid derivatives were isolated, with seven being newly discovered (1-7) and the remaining seven previously described (8-14). Notably, compounds 1-3 are rare linearly fused 6/6/5 tricyclic prenylated indole alkaloids, with asperversiamide J being the only known natural product of this kind. The isopentenyl substitutions at the 5-position in compounds 4 and 5 are also rare, with only compounds 1-(5-prenyl-1H-indol-3-yl)-propan-2-one (8) and 1-(6-methoxy-5-prenyl-1H-indol3-yl)-propan-2-one currently available. In addition, compounds 6 and 7 are new framework indole alkaloid derivatives bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. The purified compounds were evaluated for their activity against G. cichoracearum, and the results revealed that compounds 7 and 9 demonstrated obvious anti-G. cichoracearum activities with an inhibition rate of 82.6% and 85.2%, respectively, at a concentration of 250 µg/mL, these rates were better than that of the positive control agent, carbendazim (78.6%). The protective and curative effects of compounds 7 and 9 were also better than that of positive control, at the same concentration. Moreover, the mechanistic study showed that treatment with compound 9 significantly increased the structural tightness of tobacco leaves and directly affect the conidiospores of G. cichoracearum, thereby enhancing resistance. Compounds 7 and 9 could also induce systemic acquired resistance (SAR), directly regulating the expression of defense enzymes, defense genes, and plant semaphorins, which may further contribute to increased plant resistance. Based on the activity experiments and molecular dockings, the indole core structure may be the foundation of these compounds' anti-G. cichoracearum activity. Among them, the indole derivative parent structures of compounds 6, 7, and 9 exhibit strong effects. Moreover, the methoxy substitution in compound 7 can enhance their activity. By isolating and structurally identifying the above indole alkaloids, new candidates for anti-powdery mildew chemical screening were discovered, which could enhance the utilization of N. tabacum-derived fungi in pesticide development.


Assuntos
Alcaloides , Aspergillus fumigatus , Neopreno , Tabaco , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Alcaloides/farmacologia
2.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542362

RESUMO

Indole alkaloids are the main bioactive molecules of the Gelsemium genus plants. Diverse reports have shown the beneficial actions of Gelsemium alkaloids on the pathological states of the central nervous system (CNS). Nevertheless, Gelsemium alkaloids are toxic for mammals. To date, the molecular targets underlying the biological actions of Gelsemium alkaloids at the CNS remain poorly defined. Functional studies have determined that gelsemine is a modulator of glycine receptors (GlyRs) and GABAA receptors (GABAARs), which are ligand-gated ion channels of the CNS. The molecular and physicochemical determinants involved in the interactions between Gelsemium alkaloids and these channels are still undefined. We used electrophysiological recordings and bioinformatic approaches to determine the pharmacological profile and the molecular interactions between koumine, gelsemine, gelsevirine, and humantenmine and these ion channels. GlyRs composed of α1 subunits were inhibited by koumine and gelsevirine (IC50 of 31.5 ± 1.7 and 40.6 ± 8.2 µM, respectively), while humantenmine did not display any detectable activity. The examination of GlyRs composed of α2 and α3 subunits showed similar results. Likewise, GABAARs were inhibited by koumine and were insensitive to humantenmine. Further assays with chimeric and mutated GlyRs showed that the extracellular domain and residues within the orthosteric site were critical for the alkaloid effects, while the pharmacophore modeling revealed the physicochemical features of the alkaloids for the functional modulation. Our study provides novel information about the molecular determinants and functional actions of four major Gelsemium indole alkaloids on inhibitory receptors, expanding our knowledge regarding the interaction of these types of compounds with protein targets of the CNS.


Assuntos
Alcaloides , Gelsemium , Animais , Gelsemium/química , Alcaloides/química , Extratos Vegetais/química , Alcaloides Indólicos/química , Ácido gama-Aminobutírico , Mamíferos/metabolismo
3.
J Nat Med ; 78(2): 382-392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347371

RESUMO

A new dimeric indole alkaloid, vincazalidine A consisting of an aspidosperma type and a modified iboga type with 1-azatricyclo ring system consisting of one azepane and two piperidine rings coupled with an oxazolidine ring was isolated from Catharanthus roseus, and the structure including absolute stereochemistry was elucidated on the basis of spectroscopic data as well as DP4 statistical analysis. Vincazalidine A induced G2 arrest and subsequent apoptosis in human lung carcinoma cell line, A549 cells.


Assuntos
Alcaloides , Antineoplásicos , Aspidosperma , Catharanthus , Humanos , Catharanthus/química , Catharanthus/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Aspidosperma/química , Aspidosperma/metabolismo
4.
Phytochemistry ; 220: 114012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311151

RESUMO

Penigrines A-E (1-5), five undescribed azepine-indole alkaloids, were isolated from the fungus Penicillium griseofulvum. Their structures with absolute configurations were determined by NMR, HRESIMS, ECD calculation, and X-ray diffraction experiments. Penigrine C (3) possesses an undescribed 6-oxa-8-azabicyclo[3.2.2]nonane-7,9-dione moiety that fused to an indole core, and penigrines D and E (4 and 5) are a pair of epimers. The plausible biosynthetic pathways of 1-5 are proposed. Penigrine A (1) shows the potential for heart failure treatment.


Assuntos
Alcaloides Indólicos , Penicillium , Alcaloides Indólicos/química , Penicillium/química , Espectroscopia de Ressonância Magnética , Fungos , Estrutura Molecular
5.
Appl Microbiol Biotechnol ; 108(1): 194, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315417

RESUMO

Diketopiperazine alkaloids have proven the most abundant heterocyclic alkaloids up to now, which usually process diverse scaffolds and rich biological activities. In our search for bioactive diketopiperazine alkaloids from marine-derived fungi, two novel diketopiperazine alkaloids, penipiperazine A (1) and its biogenetically related new metabolite (2), together with a known analogue neofipiperzine C (3), were obtained from the strain Penicillium brasilianum. Their planar structures and absolute configurations were elucidated by extensive spectroscopic analyses, 13C NMR calculation, Marfey's, ECD, and ORD methods. Compound 1 featured a unique 6/5/6/6/5 indole-pyrazino-pyrazino-pyrrolo system, and its plausible biogenetic pathway was also proposed. Additionally, compounds 1-3 have been tested for their inflammatory activities. 1 and 2 significantly inhibited the release of NO and the expression of related pro-inflammatory cytokines on LPS-stimulated RAW264.7 cells, suggesting they could be attracting candidate for further development as anti-inflammatory agent. KEY POINTS: • A novel diketopiperazine alkaloid featuring a unique 6/5/6/6/5 indole-pyrazino-pyrazino-pyrrolo system was isolated from the marine fungus Penicillium brasilianum. • The structure of 1 was elucidated by detailed analysis of 2D NMR data, 13C NMR calculation, Marfey's, ECD, and ORD methods. • Compounds 1 and 2 significantly inhibited the release of NO and the expression of related pro-inflammatory cytokines on LPS-stimulated RAW264.7 cells.


Assuntos
Alcaloides , Penicillium , Dicetopiperazinas/farmacologia , Lipopolissacarídeos , Fungos , Alcaloides/química , Indóis , Anti-Inflamatórios/farmacologia , Citocinas , Estrutura Molecular , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química
6.
Phytochemistry ; 219: 113988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224846

RESUMO

Hedscandines A-C (1-3), three undescribed indole alkaloids were isolated from Hedyotis scandens Roxb, a traditional Chinese medicine widely used in the treatment of respiratory ailments. Their structures were elucidated by extensive spectroscopic data and electronic circular dichroism calculation. Hedscandine A (1), possessed a unique carbon skeleton with a 1,4-oxazonin-2(3H)-one core system and displayed a rapid bactericidal activity against MRSA with a MIC value of 16 µg/mL. Mechanistic studies showed that compound 1 could disrupt the integrity of bacterial cell membranes and thus lead to bacterial death.


Assuntos
Hedyotis , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Testes de Sensibilidade Microbiana , Alcaloides Indólicos/química
7.
Org Lett ; 26(3): 670-675, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38206835

RESUMO

The total synthesis of dragmacidins G and H was achieved for the first time by employing nucleophilic aromatic substitution and site-selective cross-coupling reactions using appropriately functionalized pyrazines as substrates. The evaluation of antibacterial activities of dragmacidin G, dragmacidin H, and synthetic analogues against Staphylococcus aureus and the efflux pump-deficient Salmonella Typhimurium revealed that the presence of a Br group on the indole ring adjacent to the sulfide unit was important for increasing antibacterial activities.


Assuntos
Antibacterianos , Alcaloides Indólicos , Staphylococcus aureus , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Alcaloides Indólicos/química
8.
J Nat Prod ; 87(2): 286-296, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284153

RESUMO

Nine new alkaloids, eugeniinalines A-H (1-8) and (+)-eburnamenine N-oxide (9), comprising one quinoline, six indole, and two isogranatanine alkaloids, were isolated from the stem-bark extract of the Malayan Leuconotis eugeniifolia. The structures and absolute configurations of these alkaloids were established based on the analysis of the spectroscopic data, GIAO NMR calculations, DP4+ probability analysis, TDDFT-ECD method, and X-ray diffraction analysis. Eugeniinaline A (1) represents a new pentacyclic quinoline alkaloid with a 6/6/5/6/7 ring system. Eugeniinaline G (7) and its seco-derivative, eugeniinaline H (8), were the first isogranatanine alkaloids isolated as natural products. The known alkaloids leucolusine (10) and melokhanine A (11) were found to be the same compound, based on comparison of the spectroscopic data of both compounds, with the absolute configuration of (7R, 20R, 21S). Eugeniinalines A and G (1 and 7) showed cytotoxic activity against the HT-29 cancer cell line with IC50 values of 7.1 and 7.2 µM, respectively.


Assuntos
Alcaloides , Antineoplásicos , Apocynaceae , Quinolinas , Humanos , Alcaloides/farmacologia , Apocynaceae/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Quinolinas/farmacologia , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/farmacologia
9.
Nat Prod Res ; 38(4): 607-613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36938846

RESUMO

Two new indole alkaloids, naucleamide H (1) and (±)-19-O-butylangustoline (8), along with seven known alkaloids, 3,14-dihydroangustine (2), (-)-naucleofficine D (3a), (+)-naucleofficine D (3b), nauclefine (4), angustidine (5),19-O-ethylangustoline (6) and angustine (7) were isolated from the water extract of Nauclea officinalis. The structures of these compounds were established by spectroscopic analysis. Among them, the cytotoxicity of 1, 2, 6 and 8 were evaluated against six human cancer cell lines (HepG-2, SKOV3, HeLa, SGC 7901, MCF-7 and KB) in vitro for the first time with 5-fluorouracil as a positive control drug. The new compound 1 had a strong inhibitory effect on the proliferation of HepG-2 with an IC50 value of 19.59 µg/mL. The new compound 8 had a strong inhibitory effect on HepG-2, SKOV3, HeLa, MCF-7 and KB, IC50 value was 5.530, 23.11, 31.30, 32.42 and 37.26 µg/mL, respectively.


Assuntos
Antineoplásicos , Rubiaceae , Humanos , Estrutura Molecular , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Linhagem Celular , Rubiaceae/química
10.
Chemistry ; 30(8): e202303519, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38018776

RESUMO

Three unusual ajmaline-macroline type bisindole alkaloids, alsmaphylines A-C, together with their postulated biogenetic precursors, were isolated from the stem barks and leaves of Alstonia macrophylla via the building blocks-based molecular network (BBMN) strategy. Alsmaphyline A represents a rare ajmaline-macroline type bisindole alkaloid with an S-shape polycyclic ring system. Alsmaphylines B and C are two novel ajmaline-macroline type bisindole alkaloids with N-1-C-21' linkages, and the former possesses an unconventional stacked conformation due to the presence of intramolecular noncovalent interactions. The chemical structures including absolute configurations of alsmaphylines A-C were established by comprehensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, and single-crystal X-ray crystallography. In addition, a plausible biosynthetic pathway of these bisindole alkaloids as well as their ability to promote the protein synthesis on HT22 cells were discussed.


Assuntos
Alcaloides , Alstonia , Oxindóis , Alstonia/química , Ajmalina , Alcaloides Indólicos/química , Estrutura Molecular , Alcaloides/química
11.
J Nat Med ; 78(1): 216-225, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37668823

RESUMO

A dimeric indole alkaloid, isovincathicine consisting of an aspidosperma type and modified iboga with C-7-C-20 connection type skeletons was first isolated from Catharanthus roseus, and the structure including stereochemistry was elucidated on the basis of spectroscopic data as well as DP4 statistical analysis. Isovincathicine inhibited cell proliferation in A549 cells. We investigated the detailed mode of action of isovincathicine-induced inhibitory effects on cell proliferation in A549 cells. Flow cytometric analysis showed that isovincathicine-treated cells accumulated in the G2 phase after 24 h, and the percentage of cells showing cell death increased after 48 h. Western blotting also showed increased expression of BimEL, an apoptosis-related protein, and decreased expression of Mcl-1 and Bcl-xL. Isovincathicine was suggested to induce apoptosis in A549 cells by a mechanism is similar to that of vinblastine.


Assuntos
Catharanthus , Humanos , Catharanthus/química , Catharanthus/metabolismo , Células A549 , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Apoptose
12.
Chemistry ; 30(5): e202303027, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37755456

RESUMO

Design strategies that can access natural-product-like chemical space in an efficient manner may facilitate the discovery of biologically relevant compounds. We have employed a divergent intermediate strategy to construct an indole alkaloid-inspired compound collection derived from two different molecular design principles, i.e. biology-oriented synthesis and pseudo-natural products. The divergent intermediate was subjected to acid-catalyzed or newly discovered Sn-mediated conditions to selectively promote intramolecular C- or N-acylation, respectively. After further derivatization, a collection totalling 84 compounds representing four classes was obtained. Morphological profiling via the cell painting assay coupled with a subprofile analysis showed that compounds derived from different design principles have different bioactivity profiles. The subprofile analysis suggested that a pseudo-natural product class is enriched in modulators of tubulin, and subsequent assays led to the identification of compounds that suppress in vitro tubulin polymerization and mitotic progression.


Assuntos
Alcaloides , Antineoplásicos , Produtos Biológicos , Oxindóis , Tubulina (Proteína) , Alcaloides Indólicos/química , Produtos Biológicos/química
13.
Org Lett ; 26(1): 274-279, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38134219

RESUMO

Chemical investigation of the emblematic Catharanthus roseus led to the discovery of trirosaline (1), the first example of a tris-ajmalicine-type monoterpene indole alkaloid and the first natural trimeric MIA ever reported from this deeply dug plant species. Its structure was primarily elucidated based on NMR and HRESIMS analyses, and the nature of its unique intermonomeric linkages was firmly confirmed based on a combination of empirical computation and ML-J-DP4 study. Its absolute configuration was mitigated by comparison of experimental and TDDFT-simulated electronic circular dichroism (ECD) spectra. A possible biosynthetic pathway for trirosaline (1) was postulated.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Monoterpenos , Catharanthus/química , Catharanthus/metabolismo , Alcaloides Indólicos/química , Aprendizado de Máquina , Proteínas de Plantas/química
14.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067519

RESUMO

Alkaloids represent a large family of natural products with diverse structures and bioactivities. These compounds and their derivatives have been widely used in clinics to treat various diseases. The endophytic Aspergillus is a filamentous fungus renowned for its extraordinary ability to produce active natural products of high therapeutic value and economic importance. This review is the first to focus on Aspergillus-derived alkaloids. Through an extensive literature review and data analysis, 263 alkaloids are categorized according to their structural features into those containing cytochalasans, diketopiperazine alkaloids, quinazoline alkaloids, quinoline alkaloids, indole alkaloids, pyrrolidine alkaloids, and others. These metabolites exhibited diverse biological activities, such as antibacterial activity, cytotoxicity, anti-inflammatory activity, and α-glucosidase, ACE, and DPPH inhibitory activities. The bioactivity, structural diversity, and occurrence of these alkaloids are reviewed in detail.


Assuntos
Alcaloides , Produtos Biológicos , Alcaloides/química , Aspergillus/química , Fungos/metabolismo , Alcaloides Indólicos/química , Plantas/metabolismo , Produtos Biológicos/farmacologia
15.
Chem Biodivers ; 20(12): e202301665, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968250

RESUMO

Gelsegansymines A (1) and B (2), two new indole alkaloids along with six known analogues (3-8) were isolated from the aerial parts of Gelsemium elegans. Their structures were elucidated by means of spectroscopic techniques. Structurally, compounds 1 and 2 possessed the rare cage-like gelsedine skeleton hybrid with bicyclic monoterpenoid. The anti-inflammatory activities of isolated compounds (1-3) were tested on LPS induced RAW264.7 cells. Under the treated concentration without toxicity for cells, the cytokines levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were evaluated by Griess method and enzyme-linked immunosorbent assay (ELISA). The results showed that compounds 1-3 exhibited anti-inflammatory activities with dose-dependent manner range from 12.5 to 50 µmol/L. Furthermore, the inhibitory activities of compounds 1 and 2 on receptor activator of NF-κB ligand (RANKL) induced osteoclast formation were tested in vitro. Compounds 1 and 2 at 5 µmol/L exhibited the significant inhibitory effect on the osteoclastogenesis induced by RANKL. This work reported the anti-inflammatory and osteoclast inhibitory activities of new monoterpenoid indole hybrids, which may inspire the further light on the related traditional application research of G. elegans.


Assuntos
Gelsemium , Osteoclastos , Animais , Camundongos , Gelsemium/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa
16.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003424

RESUMO

A new trend in the use of indole alkaloids from natural products is the preparation of topical pharmaceutical formulations with applications in the field of regenerative medicine. These formulations can be characterized through the ease of administration, the proven healing action of indole alkaloids, the protection of skin lesions, and the assurance of oxygen permeability. Based on the numerous benefits that indole compounds extracted from the Vinca minor plant show externally, the purpose of this study was to develop new semi-solid biocomposites for topical application obtained from hydroalcoholic macerates of 40%, 70%, and 96% concentrations from the stems and leaves of the Vinca minor L. plant from the Dobrogea area. A total of 12 pharmaceutical formulations (named P1-P12) were prepared for which the physicochemical properties, pH, thermal stability, spreading capacity, and rheological behavior were determined. The optimal formulas with antioxidant and antimicrobial capacity were evaluated and determined (P3, P4, P9, and P10). Antioxidant activity was elicited using the photochemiluminescence method. The microorganisms used for the evaluation of antimicrobial activity were Gram-positive Staphylococcus aureus (ATCC 25923), Gram-negative Escherichia coli (ATCC 25922), and a fungal species, Candida albicans (ATCC 900288). The study of the rheological profile for the obtained composites revealed Newtonian, pseudoplastic, and thixotropic fluid behaviors. Following determinations using the photochemiluminescence method, the best antioxidant activity was obtained in the P3 and P9 preparations. The results of the antimicrobial analysis confirmed that both the leaves and the stems of the Vinca minor plant represent a valuable source of antibacterial substances, and the biocomposites analyzed may represent an alternative in the realization of new pharmaceutical preparations with topical applications based on hydroalcoholic macerates obtained from the Vinca minor plant.


Assuntos
Anti-Infecciosos , Vinca , Vinca/química , Antioxidantes/farmacologia , Alcaloides Indólicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
17.
Org Biomol Chem ; 21(40): 8190-8196, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788053

RESUMO

Alscholarines A and B (1 and 2), two unprecedented rearranged monoterpene indole alkaloids, were isolated from Alstonia scholaris. Alscholarine A (1) features an imidazole ring fused with a rearranged vallesamine-type alkaloid possessing an unparalleled 6/5/6/6 tetracyclic skeleton through an unprecedented C7-C-19 connectivity. Alscholarine B (2), incorporating an unusual 7-oxa-1-azabicyclo[3.2.1]octane moiety, represents a unique rearranged vallesamine-type alkaloid with a 6/5/6/6/5 ring system via an unprecedented C-6-C-20 connectivity. Their structures were established by spectroscopic analysis, X-ray crystallography, and quantum-chemical calculations. Their plausible biosynthetic pathways were proposed. The vasorelaxant and anti-inflammatory activities of them were also evaluated. Compounds 1-3 showed moderate vasorelaxant activities.


Assuntos
Alcaloides , Alstonia , Alstonia/química , Monoterpenos/farmacologia , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Vasodilatadores , Estrutura Molecular
18.
Fitoterapia ; 171: 105689, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37757920

RESUMO

Four new monoterpene indole alkaloids (1-4) together with twelve known alkaloids (5-16) were isolated from the roots of Alstonia rupestris. Compound 1 was the first example of C2-symmetric heteroyohimbine-type indole alkaloid homodimer obtained from natural plant resource. Their structures were elucidated on the basis of spectroscopic data. The absolute configuration of 1 was determined by comparison of its calculated and experimental electronic circular dichroism (ECD) spectra. All compounds were evaluated for their anti-inflammatory activities by measuring their NO inhibitory effects in LPS-stimulated RAW 264.7 cells. Compound 2 showed strong NO inhibition with IC50 value of 4.2 ± 1.3 µM. Moreover, compound 2 could decrease the expressions of cyclooxygenase-2 (COX-2) and transforming growth factor beta-1 (TGF-ß1).


Assuntos
Alstonia , Alstonia/química , Monoterpenos/farmacologia , Monoterpenos/química , Estrutura Molecular , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
19.
Acta Pharmacol Sin ; 44(12): 2388-2403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580494

RESUMO

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, which has yet no curable medication. Neuroinflammation and mitochondrial dysfunction are tightly linked to DPN pathology. G-protein-coupled receptor 40 (GPR40) is predominantly expressed in pancreatic ß-cells, but also in spinal dorsal horn and dorsal root ganglion (DRG) neurons, regulating neuropathic pain. We previously have reported that vincamine (Vin), a monoterpenoid indole alkaloid extracted from Madagascar periwinkle, is a GPR40 agonist. In this study, we evaluated the therapeutic potential of Vin in ameliorating the DPN-like pathology in diabetic mice. Both STZ-induced type 1 (T1DM) and db/db type 2 diabetic (T2DM) mice were used to establish late-stage DPN model (DPN mice), which were administered Vin (30 mg·kg-1·d-1, i.p.) for 4 weeks. We showed that Vin administration did not lower blood glucose levels, but significantly ameliorated neurological dysfunctions in DPN mice. Vin administration improved the blood flow velocities and blood perfusion areas of foot pads and sciatic nerve tissues in DPN mice. We demonstrated that Vin administration protected against sciatic nerve myelin sheath injury and ameliorated foot skin intraepidermal nerve fiber (IENF) density impairment in DPN mice. Moreover, Vin suppressed NLRP3 inflammasome activation through either ß-Arrestin2 or ß-Arrestin2/IκBα/NF-κB signaling, improved mitochondrial dysfunction through CaMKKß/AMPK/SIRT1/PGC-1α signaling and alleviated oxidative stress through Nrf2 signaling in the sciatic nerve tissues of DPN mice and LPS/ATP-treated RSC96 cells. All the above-mentioned beneficial effects of Vin were abolished by GPR40-specific knockdown in dorsal root ganglia and sciatic nerve tissues. Together, these results support that pharmacological activation of GPR40 as a promising therapeutic strategy for DPN and highlight the potential of Vin in the treatment of this disease.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Vincamina , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/patologia , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Monoterpenos/química , Monoterpenos/farmacologia , Receptores Acoplados a Proteínas G , Nervo Isquiático/patologia , Transdução de Sinais , Vincamina/farmacologia , Vincamina/uso terapêutico
20.
J Nat Prod ; 86(8): 2059-2064, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37560942

RESUMO

Hepatic ischemia/reperfusion injury (IRI) is a major factor contributing to the failure of hepatic resection and liver transplantation. As part of our ongoing investigation into bioactive compounds derived from fungi, we isolated eight indole alkaloids (1-8) from the endophytic fungus Aspergillus amoenus TJ507. Among these alkaloids, one previously undescribed compound, amoenamide D (1), was identified. The planar structure of 1 was elucidated by extensive spectroscopic analysis, including HRESIMS and NMR spectra. The absolute configuration of 1 was elucidated by using electronic circular dichroism calculations. Notably, in the CoCl2-induced hepatocyte damage model, notoamide Q (3) exhibited significant anti-hypoxia injury activity. Furthermore, in a murine hepatic ischemia/reperfusion injury model, treatment with 3 prevents IRI-induced liver damage and hepatocellular apoptosis. Consequently, 3 might serve as a potential lead compound to prevent hepatic ischemia/reperfusion injury.


Assuntos
Hepatopatias , Traumatismo por Reperfusão , Camundongos , Animais , Fígado , Fungos , Alcaloides Indólicos/química , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...